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Abstract A boundary layer analysis is presented for the fluid flow and heat transfer
characteristics of an incompressible micropolar fluid flowing over a plane moving surface in
parallel or in reverse to the free stream. The isothermal boundary condition has been treated in
this paper. The resulting system of non-linear ordinary differential equations is solved by the
multi-stage continuous Runge-Kutta method with shooting techniques. Numerical results are
obtained for the velocity, angular velocity and temperature distributions. The results indicate that
micropolar fluids display drag reduction and heat transfer reduction characteristics.

Nomenclature
Tw;T1 = wall temperature, free stream

temperature
Rew = Reynolds number, uwx

v
Re1 = Reynolds number, u1x

v
N = angular velocity
f = dimensionless stream function
g = dimensionless angular velocity
(x, y) = rectangular Cartesian coordinates
Pr = Prandtl number, v

�
T = fluid temperature
j = micro inertia
� = material coefficient
Nu = Nusselt number
u = velocity component in x-direction
v = velocity component in y-direction

Greek symbols
� = density
� = thermal diffusivity
 = stream function
� = micropolar parameter, ��
� = dynamic viscosity
� = kinematics viscosity
� = dimensionless temperature
� = similarity variable
B = dimensionless parameter,

x2

�Rew�Re1�j
� = dimensionless parameter, 2


�j

 = viscosity coefficient of the fluid
� = dimensionless parameter,

1� Re1
Rew

� �ÿ1
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Introduction
Boundary-layer behavior over a moving continuous solid surface is an
important type of flow occurring in several engineering applications, for
example, the aerodynamic extrusion of plastic sheets, the cooling of a metallic
plate in a cooling bath, the boundary layer along material handling conveyers,
and the boundary layer along a liquid film in condensation processes. In view
of these applications, Sakiadis (1969) initiated the theoretical study of boundary
layer on a continuous semi-infinite sheet moving steadily through an otherwise
quiescent fluid environment. An experimental and theoretical treatment was
made for the flow past a continuous flat surface by Tsou et al. (1967) who
determined heat transfer rates for certain values of the Prandtl number. Choi
(1982) considered the axisymmetric boundary layer flow generated by a
moving, continuous, hot cylinder of infinite length issuing from a slot into
stagnant air at uniform temperature. Karwe and Jaluria (1986) carried out a
numerical and analytical study of the transport process arising due to the
movement of a continuous heated body. Abdelhafez (1989) and Chappidi and
Gunnerson (1989) studied the boundary layer flow on a continuous flat surface,
where both the free stream and plate velocities are constant and are moving in
the same direction. Afzal et al. (1993) considered the momentum and heat
transfer on a continuous flat surface moving in a parallel stream by using a
composite velocity of the free stream and wall velocities. Kumari and Nath
(1996) investigated the momentum and thermal boundary layers over a semi-
infinite flat plate when the external stream as well as the plate is impulsively
moved with constant velocities. Lin and Hung (1994) studied the flow and heat
transfer of a plane surface moving in parallel and in reverse to the free stream.

All the above investigations were restricted to Newtonian fluid. Due to the
increasing importance in the processing industries and elsewhere of materials
whose flow behavior in shear cannot be characterized by Newtonian
relationships, a new stage in the evolution of fluid dynamic theory is in
progress. Hoyt and Fabula (1984), and Vogel and Patterson (1964) conducted
experiments with fluids containing minute amounts of polymeric additives.
These experiments indicated that fluids with additives display a reduction in
skin friction near a rigid body. The Newtonian fluid mechanics cannot explain
this phenomenon. Therefore, Eringen (1966) has proposed the theory of
micropolar fluids taking into account the inertial characteristics of the
substructure particles, which are allowed to undergo rotation. This theory can
be used to explain the flow of colloidal fluids, liquid crystals, animal blood, etc.
Eringen (1972) extended the micropolar fluid theory and developed the theory
of thermomicropolar fluids. The boundary layer concept in such fluids was first
studied by Peddieson and McNitt (1970) and Wilson (1970). Mathur et al. (1978)
studied steady thermal boundary-layer flow past a circular cylinder whose axis
is placed normal to an oncoming free stream of an incompressible micropolar
fluid. Gorla (1983) investigated the steady boundary layer flow of a micropolar
fluid at a two-dimensional stagnation point on a moving wall. Hassanien and
Gorla (1990) investigated the heat transfer characteristics of a steady,
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incompressible, micropolar fluid flowing past a non isothermal stretching sheet
with suction and blowing. Gorla and Hassanien (1990) analyzed the boundary
layer flow of a micropolar fluid in the vicinity of an axisymmetric stagnation
flow on a moving cylinder.

The present work was undertaken in order to study the flow and heat
transfer of the micropolar fluid on a plane surface moving in parallel and in
reverse to the free stream. The development of the velocity, angular velocity and
temperature distributions have been illustrated for several values of � and �.

Analysis
Consider a steady, laminar, incompressible, micropolar fluid flow over a plane
surface, which is moving in a parallel or reverse to a free stream of a uniform
velocity u1. The plane surface is assumed to move with a uniform velocity of
uw and is maintained at a constant temperature Tw. Assume the surface and
the free stream are at the same temperature or with small temperature
difference so that the buoyancy effect on flow is negligible. The physical
properties of fluid are assumed to be constant.

Under the assumption of the boundary layer, the governing equations, as
given by Eringen (1966; 1972) may be written as:
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With boundary conditions
u � �uw; v � 0;T � Tw;N � 0 at y � 0

u! u1;T ! T1;N ! 0 as y!1
In the above equations, x and y are coordinates parallel and normal to the plate
respectively; u, v are the velocity components in x and y directions respectively;
N is the angular velocity; T is the temperature; �; k and 
 are the kinematic,
rotational and gyro viscosity coefficients respectively; j is the microinertia per
unit mass and � is the thermal diffusivity of the fluid.

A comment will be made on the boundary condition of microrotation at the
wall as given by the equation: N (x, 0) = n @u

@y
. When n = 0, we obtain N(x, 0) = 0.

This represents the case of concentrate particle flows in which the
microelements close to the wall are not able to rotate. The case corresponding
to n=1/2 results in the vanishing of the antisymmetric part of the stress tensor
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and represents weak concentrations. The particle spin is equal to fluid vorticity
at the boundary for fine particle suspensions. The case corresponding to n = 1
is representative of turbulent boundary layer flows. Thus, for n = 0 particles
are not free to rotate near the surface, whereas, as n increases to 0.5 and 1, the
microrotation term gets augmented and induces flow enhancement. In this
paper, we have considered the case corresponding to n = 0 only.

Proceeding with the analysis, we define the following transformations:

� � y

x

� �
Rew
� Re1� �12 ; f �  

� Rew
� Re1� �12

� � uw

uw � u1� � � 1� u1
uw

� �ÿ1

� 1� Re1
Rew

� �ÿ1

� � Tÿ T1
T

w
ÿ T1

N � �

x2
Rew
�Re1� �32 g �� �

Equations (2), (3) and (4) are transformed in terms of the variable � as:

2 1��� �f 000 � ff 00 � 2�g �� � � 0 �5�

� g00 ÿ 2� B 2g� f 00� � � f 0g� g0f � 0 �6�

2�00 � Pr �0f � 0 �7�
The transform boundary conditions are given as:

f 0� � � 0 ; f 0 0� � � �� ; f 0 1� � � 1ÿ � �8�

g 0� � � 0 ; g 1� � � 0 ; � 0� � � 1 ; � 1� � � 0 �9�
In the above equations, a prime denotes differentiating with respect to �.The
equations (5-7) together with the boundary conditions (8) and (9) are solved
numerically by using the multi-stage continuous implicit Runge-Kutta method
with Shooting method.

Method of solution
Initial value problems arise in many applications in engineering fluid
mechanics. Several schemes are proposed to solve such problems. For a survey
of methods, we refer to the work of Alexander (1977) and El-Gendi (1969). In
this paper, we address the question of numerical solution of stiff system of
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ordinary differential equations (ODEs). We apply the diagonally implicit
Runge-Kutta methods (DIRK) for stiff system of ODEs.

El-Gendi (1969) used a finite Chebyshev expansion

y�t� �
Xq

r�0

arTr�t� �10�

where t " [-1,1] to evaluate the integral
Rt
ÿ1

y�s�ds at points tI � ÿcos�i�=q�
where i = O (1) q.

The partition interval [0,tf ] is to be defined as
� � f0 � t0 � t1 � . . . tN � tfg with step size �i � ti�1 ÿ ti. Each interval
�ti; ti�1� is divided by the Chebyshev collocation points into:

ti j � ti � hicj ; cj � 1

2
1ÿ cos

j�

�

� �� �
and j � 0 1� �� �11�
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:::::::::::
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Consider the approximate ~f �t� for f �t� as:
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such that

r � 0�1��; t � ti � �hi; i � 0�1�Nÿ 1 andTr��� � cos�r cosÿ1����
is the Chebyshev polynomial. A summation symbol with double primes
denotes a sum with the first and last terms halved.

By using (12) and (13) and the following relation:

Z�
0

Tr 2sÿ 1� �ds � 1

2

Tr�1�2� ÿ 1�
2�r� 1� ÿ Trÿ1�2 �ÿ 1�

2�rÿ 1� � �ÿ1�r�1

r2 ÿ 1
; r � 2

1

4
T2 2 �ÿ 1� � ÿ 1f g ; r � 1

T1 2 �ÿ 1� � � 1 ; r � 0

8>>>>><>>>>>:
We obtain
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Zti�� hi
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~f s� �ds � hi
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bl �� �~f til�� �14�

Where

bl �� � � 1

2 � 1� ��l � �0l� �
�X�

j�0

Tj xl� �
1���j

ÿ �
j� 1� � Tj�1 2 �ÿ 1� �� ÿ1� �j

� �
ÿ
X�
j�2
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1� ��j

ÿ �
jÿ 1� � Tjÿ1 2 �ÿ 1� �� ÿ1� �j

� ��
; l � 0 1� ��

�15�

xl � ÿcos l�
�

ÿ �
and �lk is the kronecker delta.

By differentiating b1���with respect to �we obtain
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From (11), (14), (15) and (16)
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f s� �ds � hiB Fi ;

Ztij

ti

: : :::::
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;
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We may now write

y t� � � y ti� � �
Zt

ti

z s� � ds; z t� � � f t; y t� �
� �

suppose that ~y�t� is the approximation of y�t� and

~z til� � � f til; ~y til� �� � l � 1 1� ��
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Where t � tj � �hj 2 Ij;bj�0� � 0; j � 0�1�� and
P�

s�0 bs��� � �
The method is similar to the implicit Runge-Kutta method of numerical

integration.

Discussion
The numerical results for the velocity and temperature fields are obtained for
� � 1:5, B = 0.01, pr = 0.7, � ranging from 0 to 4.5 and � ranging from 0 to 1.

The wall shear and couple stresses are written as

�w � �� �� � @ u

@ y

����
y�0
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x

� �2
Rew � Re1� �32 1��� � f 00 o� �
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����
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mw � 
 �

x3

� �
Rew �Re1� �2 g0 0� �

The Nusselt number can be written as

Nu � ÿ x

Tw ÿ T1� �
@T

@ y

����
y�0

Nu � ÿ Rew �Re1� �12 �0 0� �
Figures 1-3 represent the distributions of velocity within the boundary layer in
the case of the moving surface in parallel to the free stream. As the material
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parameter � increases we observe that the velocity distribution becomes less
uniform within the boundary layer. The thickness of boundary layer increases
as the material parameter � increases.

Figures 4-6 display the effect of continuous, moving plate in parallel
to free stream on the microrotation component. As the material parameter �
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Figure 1.
Velocity distribution for
� � 0:0 (parallel state)
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Velocity distribution for
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Velocity distribution for
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increases the magnitude of angular velocity also increases. Figures 7-9
describe the temperature distributions within the thermal boundary layer for
moving surface in parallel to free stream. The temperature distributions
become more uniform within the thermal boundary layer as the material
parameter � decreases.

Figure 10 shows the velocity distribution for moving surface in reverse
to free stream. The velocity distribution becomes more uniform within
the boundary layer as the material parameter � decreases. The thickness
of boundary layer increases with the material parameter �. Figure 11
indicates that the magnitude of angular velocity decreases as
the material parameter � increases for moving surface in reverse to free
stream.

Figure 12 displays the temperature distribution for the moving
surface in reverse direction to the free stream. The temperature takes
more uniform shape with increasing value of the material
parameter �. As the material parameter � increases, the thickness of the
thermal boundary layer increases.

The missing values of the velocity, angular velocity and thermal
functions for the parallel state are contained in Table I but for the reverse
state in Table II. The results in Table I indicate that the friction factor
and the heat transfer rate decrease as the material parameter � increases.
The results show that the wall couple stress decreases with increasing
values of the material parameter �. The results for the reverse flow in
Table II show that the friction factor is not sensitive to �. As the

θ
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Temperature
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material parameter � increases the wall couple stress decreases whereas
the heat transfer rate increases at � = 0.0 but decreases at � = 0.05, 0.1.
We may note that � = 0 case corresponds to Newtonian fluids. By
comparing the Newtonian fluid data with micropolar fluid data, from these
tables, we observe that micropolar fluids display reduced drag and heat
transfer rate.
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Table I.
Values of f 00�0�; g0�0�
and ÿ�0�0� for various
values of � and � for
parallel moving surface

� � f 00�0� g0�0� ÿ�0�0�

0.0 0.0 0.9001 0.0 0.1088
0.5 0.7086 ±0.0441 0.1026
1.5 0.4484 ±0.1173 0.0961
4.5 0.15496 ±0.1455 0.1199

0.1 0.0 0.7542 0.0 0.1124
0.5 0.5956 ±0.0358 0.1074
1.5 0.3872 ±0.0963 0.1023
4.5 0.1419 ±0.1226 0.1299

0.2 0.0 0.5885 0.0 0.1155
0.5 0.4662 ±0.0271 0.1117
1.5 0.30903 ±0.0737 0.1079
4.5 0.1177 ±0.0956 0.1393

0.3 0.0 0.4064 0.0 0.1182
0.5 0.3227 0.0183 0.1157
1.5 0.2171 ±0.05003 0.1131
4.5 0.0851 ±0.0658 0.1481

0.4 0.0 0.2097 0.0 0.1206
0.5 0.1669 ±0.0092 0.1193
1.5 0.1136 ±0.0025 0.11802
4.5 0.00454 ±0.00337 0.1566

0.5 0.0 0.0 0.0 0.1647136
0.5 0.0 0.0 0.1647136
1.5 0.0 0.0 0.1647136
4.5 0.0 0.0 0.1647136

0.6 0.0 ±0.2213 0.0 0.1243
0.5 ±0.1766 0.0093 0.1257
1.5 ±0.1231 0.02601 0.12707
4.5 ±0.5046 0.0351 0.1727

0.7 0.0 ±0.45307 0.0 0.1257
0.5 ±0.3621 0.0188 0.1286
1.5 ±0.2523 0.0525 0.1313
4.5 ±0.1052 0.0714 0.1806

0.8 0.0 ±0.69404 0.0 0.1267
0.5 ±0.5553 0.0285 0.1312
1.5 ±0.38907 0.0795 0.1353
4.5 ±0.1639 0.1086 0.1883

0.9 0.0 ±0.9430 0.0 0.1271
0.5 ±0.5699 0.0211 0.1803
1.5 ±0.4209 0.0593 0.1888
4.5 ±0.2260 0.1465 0.1960

1.0 0.0 ±0.8957 0.0 0.1715
0.5 ±0.7247 0.0265 0.1834
1.5 ±0.5366 0.0174 0.1944
4.5 ±0.2911 0.1849 0.2035
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Concluding remarks
The theory of micropolar fluids due to Eringen is used to formulate a set of
equations for the micropolar fluid flow and heat transfer in a parallel or reverse
to a free stream. We have considered isothermal boundary condition in this
paper. The governing boundary layer equations are solved numerically. The
development of the temperature, the velocity and angular velocity distributions
has been illustrated. A discussion is provided for the effect of the material
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0.6

0.4

0.2

0

–0.2

ξ = 0.1

0 1 2 3 5 6

η

4 7 8 9

∆=0.0, 0.5, 1.5, 4.5θθ

Figure 12.
Temperature

distribution for � � 0:1
(reverse state)

Table II.
Values of f 00�0�; g0�0�
and �0�0� for various

values of � and � for
reverse moving surface

� � f 00�0� ÿg0�0� ÿ�0�0�

0.0 0.0 1.0 0.0 0.1087
0.5 1.0 0.0252 0.1369
1.5 0.9999 0.0673 0.1278
4.5 1.0 0.1455 0.1986

0.05 0.0 0.95 0.0 0.1011
0.5 0.95 0.02501 0.1262
1.5 0.9499 0.0653 0.1166
4.5 0.9499 0.1355 0.1085

0.1 0.0 0.8999 0.0 0.1234
0.5 0.8999 0.0246 0.1143
1.5 0.9 0.0626 0.1039
4.5 0.8999 0.12207 0.0954
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parameter � on the boundary layer and missing values of velocity, angular
velocity and thermal functions are tabulated for a wide range of the material
parameter � and dimensionless parameter �. The results indicate that
micropolar fluids display drag reduction and heat transfer reduction
characteristics.
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